lunes, 1 de junio de 2015

unidad 6.-CARACTERISTICAS FUNCIONALES DE DISPOSITIVOS DE COMUNICACION


DISPOSITIVOS DE COMUNICACIÓN


Toda implementación de una red de comunicaciones de datos involucra una filosofía de diseño y un conjunto de componentes físicos que materializan esta filosofía.


TERMINALES


Son lugares donde se conecta un sistema central de procesamiento. Se hace referencia a dos formas de conectar un sistema central con una o varias terminales o sistemas secundarios: punto a punto o multipunto.


PUNTO A PUNTO
Cuando un enlace físico une sólo dos puntas de transmisión de datos, desde donde, por lo general, tanto se pueden enviar como recibir.
Esta conexión tiene importantes características
· Tiene bajo costo
· Permite forma “Conversacional” de comunicaciones
· Apta para transmisión de lotes de datos
· Permite fácil migración a fibra óptica
· Válido en topologia de estrella, anillo y árbol
· Admite la utilización de diferentes medios físicos
· Es de fácil implementación (en general es simple)


MULTIPUNTO
Se utiliza este termino cuando se hace referencia a un sistema central que conecta varias terminales o sistemas secundarios.
La conexión multipunto tiene las siguientes características
· Economiza líneas, modems, adaptadores, puertos del procesador
· Exige la utilización de un “intermediario”
· Exige la utilización del sondeo
· Aumenta los tiempos de respuesta
· Permite mayor conexión de terminales por cada procesador central
· Software y hardware relativamente complejo




ADAPTADORES DE COMUNICACIÓN


El adaptador de comunicaciones es un elemento que conceptualmente existe en cada extremo de cada cable de comunicaciones. Normalmente son dos piezas de hardware independientes-tarjetas de circuitos impresos- aunque pueden venir integrados en el dispositivo. Su modularidad es una condición deseable porque proporciona mayor flexibilidad de configuración al equipo que los contiene.


En salida su función principal es preparar los datos para su transmisión a través de la línea, serializándolos, insertando caracteres de control en el mensaje, permitiendo la sincronización, respondiendo a los comandos de control. En la mayoria de los caso maneja la detección de errores y corrección y el encuadre de datos dentro de un bloque transmitible.


Originalmente los adaptadores venían en modelos especiales para cada disciplina de comunicaciones utilizadas. Actualmente los adaptadores son pequeños computadores implementados en una tarjeta de circuitos, que tienen gran inteligencia residente.




CODECS(CODES)


El uso de mensajes mas cortos implicaría una pérdida de información en el receptor, que en muchos caos no sería admisible. Entonces, la solución consistió en acortar la forma de representar los datos, sin sacrificar contenido. Asi es como nacen los COMPRESORES/DESCOMPRESORES DE DATOS (CODES)


Un codes consiste en un dispositivo capaz de analizar una secuencia de caracteres, estudiar su distribucion, frecuencia e interrelaciones y producir finalmente una secuencia de bits de menor longuitud que transporte la información original, con total garantía de reversibilidad fidedigna del proceso. De lo anterior se deduce que los codes trabajan en pares por cada linea de comunicación.
Los codes mas modernos utilizan algoritmos muy sofisticados que analizan grandes bloques de datos para estudiarlos y lograr mayor compresión. Muchos garantizan una compactación que supera la relación 2:1.


CARACTERISTICAS DE LOS CODES
· Comprensión de datos de 2:1( o mas)
· Independencia del protocolo utilizado.
· Muy fácil instalación
· Transparente al usuario final
· Completa detección y corrección de errores
· Operación con modems o redes de servicio digitales
· Implementación conjunta con multiplexores STDM




MODEMS


Los modems son dispositivos destinados principalmente a la conversion de señales digitales en analógicas y viceversa. Su nombre proviene de la contracción de modulación y demodulación.


Pueden ser externos, independientes, o residir dentro del gabinete del procesador central. Según el caso, se les llama modulares o integrados. Se distinguen por sincrono y asincrono, dependiendo del tipo de mensaje a transmitir. Cuando es necesario pueden proveer la sincronización de la señal. Tambien pueden tener mecanismos de discado y autorespuesta. Algunos nombres que estan en uso para casos especiales son:

· BICANALIZADOR( Transmite por dos lineas)
· MULTICANALIZADOR(combinación de un modem y un multicanalizador)

MULTICANALIZADORES

La funcion principal es proveer un medio para compartir una linea de comunicación entre diversas estaciones de trabajo y/o unidades de procesamiento. Esto conlleva a una reducción de los costos de operación porque se economizan en :
1. Puertos del procesador central 
2. Modems
3. Adaptadores
4. Lineas de telefono y/u otro tipo de linea
5. Tiempo de la UCP


Técnicas de multicanalización
Dos clases de multicanalizadores
+ de conexión troncal
+ de conexión en líneas simples


Dos técnicas Básicas de multicanalización /demulticanalización


· FDM(por division de frecuencia)
· TDM(por division del tiempo)


FDM
En la técnica se divide el ancho de banda en rangos de frecuencia. A cada canal se asigna un rango R de amplitud suficiente como para permitir la transmision de lo que se desee enviar.
Dado que no todos los medios fisicos de transmisión admiten un gran ancho de banda, en medios economicos se tienen grandes limitaciones en el número de canales. En un instante t se tienen todos los canales transmitiendo simultaneamente. Esa simultaneidad significa economia en los tiempos finales del sistema y esa es la principal ventaja de esta técnica.


TDM( igualitario y ponderado)
Dos subdivisiones son necesarias en TDM según se haga referencia al tiempo o a la longuitud de los elementos transmitidos. El tiempo se divide en períodos fijos cada uno de los cuales se asigna a un canal. Si esta asignación es según una ronda uniforme, tenemos TDM igualitario.


IGUALITARIO(BIT)
TDM PONDERADO(BYTE)
ESTADISTICO(BLOQUE)


En un instante t cualquiera un solo de los canales se encuentra transmitiendo y éste utiliza todo el ancho de banda del medio utilizado. Como desventaja tiene la falta de simultaneidad. Como beneficio, importante el permitir un “infinito” número de canales, sacrificando el tiempo total del sistema. Para el caso de TDM PONDERADO tendremos que la ronda de canales no es uniforme sino que, algunos canales se repetiran más veces que otros. De esta manera se obtienen prioridades de transmisión diferentes para cada canal.


TDM ESTADISTICO(STDM)

Es una variante donde se trata de aprovechar los tiempos ociosos de las líneas de comunicación. En un ambiente interactivo normal, es bastante claro que las líneas estarán más tiempo ociosas que ocupadas. Si en el esquema de FDM igualitario agregamos una pregunta a cada canal, antes de darle la oportunidad de transmitir, tendremos un esquema STDM. Una ventaja del STDM es que rompe la restriccion de la suma de vi <= V por lo tanto se podra tener una línea de 9600 bps que sea comun a 4 canales de 2400 bps y un canal de 1200.

CONCENTRADORES


Es un dispositivo inteligente basado en un microprocesador cuyo cometido principal es concentrar líneas de comunicación. Esta concentración permite economizar líneas, modems, adaptadores y puertos de conexión central. Su uso puede ser local o remoto. El concentrador realiza el sondeo (polling)de sus terminales en forma totalmente independientes y asincrónica de las transmisiones del procesador central.


Entre las funciones comúnmente realizadas por el concentrador destacan:
· Sondeo de terminales
· Conversión de protocolos
· Conversión de códigos
· Elaboración de formatos de mensajes
· Recolección local de datos como respaldo
· Conversión de velocidades
· Compactación de datos
· Control de errores
· Reingreso automático de los datos capturados
· Diagnósticos.
En general son inteligentes, de programación fija y de capacidad de almacenamiento limitada.


CONTROLADORES


También llamados procesadores nodales. Un concentrador se distingue de un controlador por su nivel de inteligencia y almacenamiento de ambos.
La función principal es CONTROLAR un grupo de terminales de aplicación específica, implementando algunos conceptos del procesamiento distribuido de datos.


PROCESADORES DE COMUNICACIONES (FEPS)


El termino FEP(Front End Processors) se aplica a procesadores de comunicación super especializados, es decir, con una arquitectura y un sistema operativo especialmente diseñados para manejar todas las funciones relativas a la administración de una res de procesamiento de datos. Su diseño particular lo hace muy eficiente en el procesamiento de las comunicaciones. Es por ello que normalmente realiza todas las funciones relacionadas con el tráfico de la red y la administración de la misma. El beneficio directo de su utilización , es un mejor aprovechamiento del cerebro central. En general admite varios computadores residentes “HOSTS” o sitemas centrales. Su utilizacion es tan generalizada que muchos equipos no se venden si no con uno o varios FEPS. En algunas aplicaciones toma el nombre de conmutadores.

Existen otros tipos de controladores como son :
· Conmutación Anterior (SWITCH IN FRONT)
· Conmutación Posterio (SWITCH IN BACK)
· Suavización de Trafico (TRAFFIC SMOOTHING)
· Conmutación de Mensajes (MESSAGE SWITCHING)
· Conmutador para procesadores de comunicaciones (CATS)
· Conmutador de llave de paso (EIA BYPASS SWITCH)
· Conmutador de retroceso (EIA FALLBACK SWITCH)

UNIDAD 5.- MULTIPLEXACION





Multiplexación por división en tiempo (TDM).

Técnica para compartir un canal de transmisión entre varios usuarios. Consiste en asignar a cada usuario, durante unas determinadas "ranuras de tiempo", la totalidad del ancho de banda disponible. Esto se logra organizando el mensaje de salida en unidades de información llamadas tramas, y asignando intervalos de tiempo fijos dentro de la trama a cada canal de entrada. De esta forma, el primer canal de la trama corresponde a la primera comunicación, el segundo a la segunda, y así sucesivamente, hasta que el n-esimo más uno vuelva a corresponder a la primera. En la multiplexación por división de tiempo (TDM) las señales de los diferentes canales de baja velocidad son probadas y transmitidas sucesivamente en el canal de alta velocidad, al asignarles a cada uno de los canales un ancho de banda, incluso hasta cuando éste no tiene datos para transmitir

El uso de esta técnica es posible cuando la tasa de los datos del medio de transmisión excede de la tasa de las señales digitales a transmitir. El multiplexor por división en el tiempo muestrea, o explora, cíclicamente las señales de entrada (datos de entrada) de los diferentes usuarios, y transmite las tramas a través de una única línea de comunicación de alta velocidad. Los MDT son dispositivos de señal discreta y no pueden aceptar datos analógicos directamente, sino demodulados mediante un módem.Los TDM funcionan a nivel de bit o a nivel de carácter. En un TDM a nivel de bit, cada trama contiene un bit de cada dispositivo explorado. El TDM de caracteres manda un carácter en cada canal de la trama. El segundo es generalmente más eficiente, dado que requiere menos bits de control que un TDM de bit. La operación de muestreo debe ser lo suficientemente rápida, de forma que cada buffer sea vaciado antes de que lleguen nuevos datos.


Los sistemas MIC, sistema de codificación digital, utilizan la técnica TDM para cubrir la capacidad de los medios de transmisión. La ley de formación de los sucesivos órdenes de multiplexación responde a normalizaciones de carácter internacional, con vista a facilitar las conexiones entre diversos países y la compatibilidad entre equipos procedentes de distintos fabricantes.



Ventajas de TDM
1. Esto usa unos enlaces solos
2. Esto no requiere al portador preciso que empareja a ambo final de los enlaces.
3. El uso de la capacidad es alto.
4. Cada uno para ampliar el número de usuarios en un sistema en un coste bajo.
5. No hay ninguna necesidad de incluir la identificación de la corriente de tráfico en cada paquete.

Desventajas de TDM

1. La sensibilidad frente a otro problema de usuario es alta
2. El coste inicial es alto
3. La complejidad técnica es más
El problema del ruido para la comunicación análoga tiene el mayor efecto.

Multiplexación por división en frecuencia (FDM).

Permite compartir la banda de frecuencia disponible en el canal de alta velocidad, al dividirla en una serie de canales de banda más angostos, de manera que se puedan enviar continuamente señales provenientes de diferentes canales de baja velocidad sobre el canal de alta velocidad.Este proceso se utiliza, en especial, en líneas telefónicas y en conexiones físicas de pares trenzados para incrementar la velocidad de los datos. En el extremo de la línea, el multiplexor encargado de recibir los datos realiza la demodulación la señal, obteniendo separadamente cada uno de los subcanales. Esta operación se realiza de manera transparente a los usuarios de la línea. Se emplea este tipo de multiplexación para usuarios telefónicos, radio, TV que requieren el uso continúo del canal.

Este proceso es posible cuando la anchura de banda del medio de transmisión excede de la anchura de banda de las señales a transmitir. Se pueden transmitir varias señales simultáneamente si cada una se modula con una portadora de frecuencia diferente, y las frecuencias de las portadoras están lo suficientemente separadas como para que no se produzcan interferencias. Cada subcanal se separa por unas bandas de guarda para prevenir posibles interferencias por solapamiento.La señal que se transmite a través del medio es analógica, aunque las señales de entrada pueden ser analógicas o digitales. En el primer caso se utilizan las modulaciones AM, FM y PM para producir una señal analógica centrada en la frecuencia deseada. En el caso de señales digitales se utilizan ASK, FSK, PSK y DPSK.

En el extremo receptor, la señal compuesta se pasa a través de filtros, cada uno centrado en una de las diferentes portadoras. De este modo la señal se divide otra vez y cada componente se demodula para recuperar la señal. La técnica de FDM presenta cierto grado de normalización. Una norma de gran uso es la correspondiente a 12 canales de voz, cada uno de 4.000 Hz (3.100 para el usuario y el resto para la banda de guarda) multiplexado en la banda de 60-108 Khz. A esta unidad se le llama grupo. Muchos proveedores de servicios portadores ofrecen a sus clientes una línea alquilada de 48 a 56 Kbps, basada en un grupo.

Ventajas de FDM

1. Aquí el usuario puede ser añadido al sistema por simplemente añadiendo otro par de modulador de transmisor y receptor domodulators.
2. El sistema de FDM apoya el flujo de dúplex total de información que es requerido por la mayor parte de la aplicación.
3. El problema del ruido para la comunicación análoga tiene menos el efecto.

Desventajas de FDM

1. En el sistema FDM, el coste inicial es alto. Este puede incluir el cable entre los dos finales y los conectors asociados para el cable.
2. En el sistema FDM, un problema para un usuario puede afectar a veces a otros.
3. En el sistema FDM, cada usuario requiere una frecuencia de portador precisa.




WDM (multiplexacion por división de longitud de ondas ).


—La multiplexacion por división de longitud de ondas es una tecnología que multiplexa varias señales sobre una sola fibra óptica mediante portadoras ópticas de diferentes longitudes de onda, usando luz procedente de un laser o un LED.

WDM puede ser de dos tipos:

—Densa(DWDM ,‘Dense’ WDM): Muchas longitudes de onda y larga distancia


—Ligera(CWDM ‘Coarse’ WDM): Pocas longitudes de onda y entornos metropolitanos
DWDM
—DWDM es multiplexion por división en longitudes de ondas densas. Es una técnica de transmisión de señales a través de fibra óptica usando la banda C (1550 nm).


Como funciona

—Varias señales portadoras (ópticas) se transmiten por una única fibra utilizando distintas longitudes de onda de un haz laser cada una de ellas

—Cada portadora óptica forma un canal óptico que podrá ser tratado independientemente del resto de canales que comparten el medio (fibra óptica) y contener diferente tipo de tráfico.

—Con esta manera se puede multiplicar el ancho de banda efectivo de la fibra óptica, así como facilitar la comunicaciones bidireccionales.





CWDM: Multiplexación por división en longitudes de onda ligeras.


—Es una técnica de transmisión de señales a través de fibra óptica.

—Características técnicas.

—Posee espaciamiento de frecuencia de 2.500 GHz (20nm), dando cavidad a láseres de gran anchura espectral.

—18 longitudes de onda, definidas en el intervalo 1270 a 1610 nm
—Los CWDM tienen un limite en 2.5 Gbps.
—Cubre hasta 80 km.
—Usa filtro opticos de banca ancha, multiplexores y demuplexores basados en TFF (tecnología de película delgada)
—Mayor espectro optico, esto no permite tener un numero de canales para utilizar sin que estos sean disminuidos a causa de la separacion entre ellos.

Componentes de un sistema WDM.




CDM: Multiplexación por división de código
CARACTERÍSTICA DEL CDM


los módulos CDM (datos, voz e imágenes) cumplen las necesidades digitales de internet banda ancha, teléfono IP, TV por satélite, seguridad, CATV y otros servicios necesarios en una residencia o pequeña oficina, trayendo beneficios como:


ØOrganización y flexibilidad;
ØConcepción compacta optimizando los espacios en las instalaciones;
ØRapidez y facilidad en las instalaciones; No necesita herramientas especiales;
Ø Posibilita configuración de acuerdo con las necesidades actuáis y futuras;


ØCompatibilidad con los productos Furukawa.



APLICACIÓN.
•Desarrollado para el cableado estructural residencial, para tráfico de voz y sistemas de seguridad, según los requisitos de las normas ANSI/TIA/EIA-570-B (Residencial de Telecomunicaciones Infraestructura Estándar) y ANSI/TIA/EIA-568B.2 (Balance Twisted Pair Cabling Componentes) con la función de distribución y control de los recursos de telefonía.

Multiplexación por división de código (CDM)

•El esquema de espectro expandido constituye una forma de codificación cada vez más importante en comunicaciones inalámbricas.
•Esta técnica no se puede encuadrar dentro delas técnicas de modulación y codificación definidas.
•puesto que puede utilizarse para transmitir tanto datos analógicos como digitales, haciendo uso de una señal analógica.
•La técnica de espectro expandido fue originalmente desarrollada con objetivos militares y de inteligencia.
•La idea esencial subyacente en este tipo de esquema es la expansión de la señal de información en un ancho de banda superior con objeto de dificultar las interferencias y la intercepción.
•. La primera variante de espectro expandido desarrollada fuera denominada por salto de frecuencias.
•Una forma más reciente de espectro expandido Es la de secuencia directa.
•Ambas variantes se utilizan en numerosos estándares y productos en comunicaciones inalámbricas.










Unidad 4 Técnicas de conmutación


CONMUTACION

La conmutación es el proceso por el cual se pone en comunicación un usuario con otro, a través de una infraestructura de comunicaciones común, para la transferencia de información.La conmutación consiste en el establecimiento de un sistema de comunicación entre dos puntos, un emisor  (Tx) y un receptor (Rx) a través de equipos o nodos de transmisión,  es decir,  que con el proceso de conmutación podemos hacer entrega de una señal desde un puerto origen hacia un puerto destino.

La conmutación es un proceso que funciona en la capa 2 del modelo OSI (Enlace de Datos). Los tres servicios fundamentales que emplean técnicas de conmutación son el telefónico, el telegráfico y el de datos, pudiendo utilizar una de las tres técnicas de conmutación actuales: de circuitos, de mensajes y de paquetes.



CONMUTACION DE CIRCUITOS


La técnica de conmutación de circuitos, que puede ser espacial o temporal, consiste en el establecimiento de un circuito físico previo al envío de información, que se mantiene abierto durante todo el tiempo que dura la misma. El camino físico se elige entre los disponibles, empleando diversas técnicas de señalización -"por canal asociado" si viaja en el mismo canal o "por canal común" si lo hace por otro distinto-, encargadas de establecer, mantener y liberar dicho circuito, vistas anteriormente. Un ejemplo de red de este tipo, es la red telefónica conmutada.

La Red Telefónica Conmutada (RTC; también llamada Red Telefónica Básica Conmutada o RTBC) es una red de comunicación diseñada primordialmente para transmisión de voz, aunque pueda también transportar datos, por ejemplo en el caso del fax o de la conexión a Internet a través de un módem acústico. Se trata de la red telefónica clásica, en la que los terminales telefónicos (teléfonos) se comunican con una central de conmutación a través de un solo canal compartido por la señal del micrófono y del auricular. En el caso de transmisión de datos hay una sola señal en el cable en un momento dado compuesta por la de subida más la de bajada, por lo que se hacen necesarios supresores de eco. La voz va en banda base, es decir sin modulación (la señal producida por el micrófono se pone directamente en el cable). Las señales de control (descolgar, marcar y colgar) se realizaban, desde los principios de la telefonía automática, mediante aperturas y cierre del bucle de abonado. En la actualidad, las operaciones de marcado ya no se realizan por apertura y cierre del bucle, sino mediante tonos que se envían por el terminal telefónico a la central a través del mismo par de cable que la conversación.
RDSI
Los equipos terminales de laRDSI o Red Digital de Servicios Integrados se comunican con la RTC a través de señales digitales en lugar de analógicas. Estas líneas de acceso utilizan velocidades de 128 kbps en el acceso básico y de hasta 2 Mbps en el acceso primario. En un futuro se esperan de este sistema velocidades de cientos de Mbps gracias al empleo de fibra óptica.
XDSL
Las tecnologías xDSL surgen para maximizar el rendimiento del par de cobre que forma la red telefónica de siempre. La de mayor difusión actualmente es la tecnología ADSLpudiendo conseguir velocidades superiores a los 20 Mbps. Las principales tecnologías de este tipo son:
  • HDSL: High bit rate Digital Subscriber Line o Línea de abonado digital de alta velocidad binaria.
  • SDSL: Symmetric Digital Subscriber Line o Línea de abonado digital simétrica.
  • ADSL: Asymmetric Digital Subscriber Line o Línea de abonado digital asimétrica.
  • VDSL: Very high bit-rate Digital Subscriber Line o DSL de muy alta tasa de transferencia


CONMUTACIN DE PAQUETES:

Un Paquete es un grupo de información que consta de dos partes: los datos propiamente dichos y la información de control, en la que está especificado la ruta a seguir a lo largo de la red hasta el destino del paquete. Mil octetos es el límite de longitud superior de los paquetes, y si la longitud es mayor el mensaje se fragmenta en otros paquetes. Esta técnica es parecida a la anterior, sólo que emplea mensajes más cortos y de longitud fija (paquetes), lo que permite el envío de los mismos sin necesidad de recibir el mensaje completo que, previamente, se ha troceado. Cada uno de estos paquetes contiene información suficiente sobre la dirección, tanto de partida como de destino, así como para el control del mismo en caso de que suceda alguna anomalía en la red. El mejor ejemplo actual de red que hace uso de esta técnica es Internet, que hace uso del protocolo IP. Otros ejemplos son las redes X.25 y Frame Realy. Los paquetes permanecen muy poco tiempo en memoria, por lo que resulta muy rápida, permitiendo aplicaciones de tipo conversacional, como son las de consulta. La conmutación de paquetes admite dos variantes distintas, según el modo de funcionamiento: modo Datagrama y Circuito Virtual.



La conmutación de paquetes se trata del procedimiento mediante el cual, cuando un nodo quiere enviar información a otro lo divide en paquetes, los cuales contienen la dirección del nodo destino. En cada nodo intermedio por el que pasa el paquete se detiene el tiempo necesario para procesarlo. Cada nodo intermedio realiza las siguientes funciones:
  • Almacenamiento y retransmisión (store and forward):hace referencia al proceso de establecer un camino lógico de forma indirecta haciendo "saltar" la información de origen al destino a través de los nodos intermedios
  • Control de ruta (routing): hace referencia a la selección de un nodo del camino por el que deben retransmitirse los paquetes para hacerlos llegar a su destino.
Los paquetes en fin, toman diversas vías, pero nadie puede garantizar que todos los paquetes vayan a llegar en algún momento determinado.


CONMUTACION DE MENSAJES:



La conmutación de mensajes es un método basado en el tratamiento de bloques de información, dotados de una dirección de origen y otra de destino, por lo que pueden ser tratados por los centros de conmutación de la red que los almacenan -hasta verificar que han llegado correctamente a su destino- y proceden a su retransmisión. Es una técnica empleada con el servicio télex y en algunas de las aplicaciones de correo electrónico. 



Ventajas
  • Se multiplexan mensajes de varios procesos hacia un mismo destino, y viceversa, sin que los solicitantes deban esperar a que se libere el circuito
  • El canal se libera mucho antes que en la conmutación de circuitos, lo que reduce el tiempo de espera necesario para que otro remitente envíe mensajes.
  • No hay circuitos ocupados que estén inactivos. Mejor aprovechamiento del canal.
  • Si hay error de comunicación se retransmite una menor cantidad de datos.
Desventajas
  • Se añade información extra de encaminamiento (cabecera del mensaje) a la comunicación. Si esta información representa un porcentaje apreciable del tamaño del mensaje el rendimiento del canal (información útil/información transmitida) disminuye.
  • Mayor complejidad en los nodos intermedios:
    • Ahora necesitan inspeccionar la cabecera de cada mensaje para tomar decisiones de encaminamiento.
    • También deben examinar los datos del mensaje para comprobar que se ha recibido sin errores.
    • También necesitan disponer de memoria (discos duros) y capacidad de procesamiento para almacenar, verificar y retransmitir el mensaje completo.
    

CONMUTACION DE CELDAS:
En los servicios de conmutación de celdas, la unidad mínima de datos conmutados es una "celda" de tamaño fijo, es vez de un paquete de longitud variable. La tecnología basada en celdas permite que la conmutación sea realizada en hardware sin la complejidad y el consumo de tiempo de cálculo frame por frame. Esto hace que la conmutación por medio de celdas más rápida y barata. Los servicios más conocidos son los siguientes:
ATM (Asynchronous Tranfer Mode): ATM es un método de transmisión de celdas de tamaño fijo (15% bytes) utilizada en redes de banda ancha. ATM puede transferir datos a tasas desde 25 Mbps hasta 622 Mbps y tiene el potencial de transferir datos a velocidades de datos medidas en Gigabits por segundo. Muchos proveedores de servicios ofrecen servicios ATM, pero la gran mayoría lo tienen planeado para un futuro muy cercano ya que su implementación es
muy cara.

SMDS (Switched Multimegabit Data Service): Como ATM, SMDS es otro servicio basado en celdas de longitud fija proveído por algunos carriers en Estados Unidos pero que no está disponible en México. SMDS usa conmutación de celdas y provee servicios tales como tarificación basada en uso y administración de red. El rango de las velocidades de transmisión van desde 1 Mbps hasta los 34 Mbps con una conectividad de muchos a muchos.



Unidad 3 Modulación

TÉCNICAS DE MODULACIÓN ANALÓGICA:
MODULACIÓN EN AMPLITUD (AM) Y MODULACIÓN EN
FRECUENCIA (FM).
Modulación engloba el conjunto de técnicas que se usan para transportar información sobre una onda portadora, típicamente una onda sinusoidal. Estas técnicas permiten un mejor aprovechamiento del canal de comunicación lo que posibilita transmitir más información en forma simultánea además de mejorar la resistencia contra posibles ruidos e interferencias. Según la American National Standard for  Telecommunications, la modulación es el proceso, o el resultado del proceso, de variar una característica de una portadora de acuerdo con una señal que transporta información. El propósito de la modulación es sobreponer señales en las ondas portadoras. Básicamente, la modulación consiste en hacer que un parámetro de la onda portadora cambie de valor de acuerdo con las variaciones de la señal moduladora, que es la información que queremos transmitir.

FRECUENCIA PORTADORA
Una señal portadora es una onda eléctrica modificada en alguno de sus parámetros por la señal de información (sonido, imagen o datos) y que se transporta por el canal de comunicaciones.
El uso de una onda portadora también soluciona muchos otros problemas de circuito, antena, propagación y ruido. Por ello, una antena práctica debe tener un tamaño aproximado al de la longitud de onda de la onda electromagnética de la señal que se va a transmitir. Si las ondas de sonido se difundieran directamente en forma de señales electromagnéticas, la antena tendría que tener más de un kilómetro de altura. Usando frecuencias mucho más altas para la portadora, el tamaño de la antena se reduce significativamente porque las frecuencias más altas tienen longitudes de ondas más cortas.
Una emisora de radio AM normalmente tiene una serie de letras asociadas: por ejemplo, KPBS. Sin embargo, una forma más práctica de referirse a una emisora de radio es por su frecuencia portadora, como 101.1 MHZ, que es la frecuencia con la que se debe sintonizar la radio. En el caso de las FM, la frecuencia portadora es de 2,4 ó 5 GHZ. El uso de frecuencias portadoras en las FM ha añadido complejidad en cuanto que la frecuencia portadora cambia con el salto de frecuencia o la secuencia de chipping directa para que la señal sea más inmune a la interferencia y el ruido. El chipping es el proceso consistente en convertir cada bit de datos en una cadena de chips expandida denominada secuencia de chipping. Es el mecanismo que permite a los dispositivos inalámbricos leer datos cuando se pierden porciones de señal.
El proceso de recuperar la información de las ondas portadoras se denomina desmodulación. En esencia, es invertir los pasos utilizados para modular los datos. En general, a medida que los esquemas de transmisión o modulación (compresión) se hacen más complejos y la velocidad de transmisión de datos aumenta, la inmunidad al ruido se reduce y la cobertura disminuye.

TÉCNICAS DE MODULACIÓN  BASICA
Uno de los objetivos de las comunicaciones es utilizar una frecuencia portadora como frecuencia básica de una comunicación, pero modificándola siguiendo un proceso denominado modulación para codificar la información en la onda portadora.
Tres aspectos de la onda portadora básica que se pueden modular son:
Amplitud
Frecuencia
Fase o ángulo
MODULACION ANALOGICA

Las tres técnicas de modulación básica son:
·         Modulación de la amplitud (AM o amplitud modulada).
·         Modulación de la frecuencia (FM o frecuencia modulada).
·         Modulación de la fase (PM o fase modulada).
La mayoría de los sistemas de comunicación utilizan alguna de estas tres técnicas de modulación básicas, o una combinación de ellas.

MODULACIÓN DE LA AMPLITUD (AM O AMPLITUD MODULADA).
La modulación de altitud (AM) es una técnica utilizada en la comunicación electrónica, más comúnmente para la transmisión de información a través de una onda transversal de televisión. La modulación en altitud (AM) funciona mediante la variación de la amplitud de la señal transmitida en relación con la información que se envía. Contrastando esta con la modulación de frecuencia, en la que se varía la frecuencia, y la modulación de fase, en la que se varía la fase. A mediados de la década de 1970, una forma de modulación de amplitud, inicialmente llamada "corrientes ondulatorias"-fue el primer método para enviar con éxito audio a través de líneas telefónicas con una calidad deprimente.


MODULACIÓN DE LA FRECUENCIA (FM O FRECUENCIA MODULADA).

La frecuencia modulada (FM) o modulación de frecuencia es una modulación angular que transmite  a través de una portadora variando su frecuencia. En aplicaciones analógicas, la frecuencia instantánea de la señal modulada es proporcional al valor instantáneo de la señal moduladora. Datos digitales pueden ser enviados por el desplazamiento de la onda de frecuencia entre un conjunto de valores discretos, una modulación conocida como FSK.
La frecuencia modulada es usada comúnmente en las radiofrecuencias de muy alta frecuencia por la alta fidelidad de la radiodifusión de la música y el habla (véase Radio FM). El sonido de la televisión analógica también es difundido por medio de FM. Un formulario de banda estrecha se utiliza para comunicaciones de voz en la radio comercial y en las configuraciones de aficionados. El tipo usado en la radiodifusión FM es generalmente llamado amplia-FM o W-FM (de la siglas en inglés "Wide-FM"). En la radio de dos vías, la banda estrecha o N-FM (de la siglas en inglés "Narrow-FM") es utilizada para ahorrar banda estrecha. Además, se utiliza para enviar señales al espacio.
La frecuencia modulada también se utiliza en las frecuencias intermedias de la mayoría de los sistemas de vídeo analógico, incluyendo VHS, para registrar la luminancia (blanco y negro) de la señal de video. La frecuencia modulada es el único método factible para la grabación de video y para recuperar de la cinta magnética sin la distorsión extrema, como las señales de vídeo con una gran variedad de componentes de frecuencia - de unos pocos hercios a varios megahercios, siendo también demasiado amplia para trabajar con ecualices con la deuda al ruido electrónico debajo de -60 dB. La FM también mantiene la cinta en el nivel de saturación, y, por tanto, actúa como una forma de reducción de ruido del audio, y un simple corrector puede enmascarar variaciones en la salida de la reproducción, y que la captura del efecto de FM elimina a través de impresión y pre-eco. Un piloto de tono continuo, si se añade a la señal - que se hizo en V2000 o video 2000 y muchos formatos de alta banda - puede mantener el temblor mecánico bajo control y ayudar al tiempo de corrección.
Dentro de los avances más importantes que se presentan en las comunicaciones, la mejora de un sistema de transmisión y recepción en características como la relación señal – ruido, sin duda es uno de los más importantes, pues permite una mayor seguridad en las mismas. Es así como el paso de Modulación en Amplitud (A.M.), a la Modulación en Frecuencia (F.M.), establece un importante avance no solo en el mejoramiento que presenta la relación señal ruido, sino también en la mayor resistencia al efecto del desvanecimiento y a la interferencia, tan comunes en A.M.
La frecuencia modulada también se utiliza en las frecuencias de audio para sintetizar sonido. Está técnica, conocida como síntesis FM, fue popularizada a principios de los sintetizadores digitales y se convirtió en una característica estándar para varias generaciones de tarjetas de sonido de computadoras personales.

MODULACIÓN DE LA FASE (PM O FASE MODULADA).
Es una modulación que se caracteriza porque la fase de la onda portadora varía en forma directamente proporcional de acuerdo con la señal modulante. La modulación de fase no suele ser muy utilizada porque se requieren equipos de recepción más complejos que los de frecuencia modulada. Además puede presentar problemas de ambigüedad para determinar si una señal tiene una fase de 0º o 180º.

3.2  TECNICAS DE MODULACION DIGITAL
v  MODULACION POR DEZPALAZAMIENTO DE AMPLITUD
La modulación por desplazamiento de amplitud, en inglés Amplitude-shiftkeying (ASK), es una forma de modulación en la cual se representan los datos digitales como variaciones de amplitud de la onda portadora en función de los datos a enviar.
La amplitud de una señal portadora análoga varía conforme a la corriente de bit(modulando la señal), manteniendo la frecuencia y la fase constante. El nivel de amplitud puede ser usado para representar los valores binarios 0s y 1s. Podemos pensar en la señal portadora como un interruptor ON/OFF. En la señal modulada, el valor lógico 0 es representado por la ausencia de una portadora, así que da ON/OFF la operación de pulsación y de ahí el nombre dado.
Como la modulación AM, ASK es también lineal y sensible al ruido atmosférico, distorsiones, condiciones de propagación en rutas diferentes en laPSTN, entre otros factores. Esto requiere una amplitud de banda excesiva y es por lo tanto un gasto de energía. Tanto los procesos de modulación ASK como los procesos de demodulación son relativamente baratos. La técnica ASK también es usada comúnmente para transmitir datos digitales sobre la fibra óptica. Para los transmisores LED, el valor binario  es representado por un pulso corto de luz y el valor binario 0 por la ausencia de luz. Los transmisores de láser normalmente tienen una corriente "de tendencia" fija que hace que el dispositivo emita un nivel bajo de luz. Este nivel bajo representa el valor 0, mientras una onda luminosa de amplitud más alta representa el valor binario

v  MODULACION POR DEZPALAZAMIENTO DE FRECUENCIA
La Modulación por desplazamiento de frecuencia o FSK, (Frequency Shift Keying) es una técnica de transmisión digital de información binaria (ceros y unos) utilizando dos frecuencias diferentes. La señal moduladora solo varía entre dos valores de tensión discretos formando un tren de pulsos donde un cero representa un "1" o "marca" y el otro representa el "0" o "espacio".
En la modulación digital, a la relación de cambio a la entrada del modulador se le llama bit-rate y tiene como unidad el bit por segundo (bps).
A la relación de cambio a la salida del modulador se le llama baud-rate. En esencia el baud-rate es la velocidad o cantidad de símbolos por segundo.
En FSK, el bit rate = baudrateAsí, por ejemplo, un 0 binario se puede representar con una frecuencia f1, y el 1 binario se representa con una frecuencia distinta f2.
El módem usa un VCO, que es un oscilador cuya frecuencia varía en función del voltaje aplicado.
Índice modulación general para una 
Siendo: fd: máxima desviación en frecuencia; Rsymb: Velocidad de símbolo por segundo

v  MODULACION POR DEZPALAZAMIENTO DE FASE
La modulación por desplazamiento de fase o PSK  (PhaseShiftKeying ) es una forma de modulación angular que consiste en hacer variar la fase de la portadora entre un número de valores discretos. La diferencia con la modulación de fase convencional (PM) es que mientras en ésta la variación de fase es continua, en función de la señal moduladora, en la PSK la señal moduladora es una señal digital y, por tanto, con un número de estados limitado.
La modulación PSK se caracteriza porque la fase de la señal portadora representa cada símbolo de información de la señal moduladora, con un valor angular que el modulador elige entre un conjunto discreto de "n" valores posibles.
Un modulador PSK representa directamente la información mediante el valor absoluto de la fase de la señal modulada, valor que el demodulador obtiene al comparar la fase de esta con la fase de la portadora sin modular.
Diagrama de las formas de onda en PSK
La señal modulada resultante, responde a la expresión:
Donde:
·        =amplitud
·        =frecuencia
·        =tiempo
·        =representa cada uno de los valores posibles de la fase, tantos como estados tenga la señal codificada en banda base multinivel.
Dependiendo del número de posibles fases a tomar, recibe diferentes denominaciones. Dado que lo más común es codificar un número entero de bits por cada símbolo, el número de fases a tomar es una potencia de dos. Así tendremos BPSK con 2 fases (equivalente aPAM), QPSK con 4 fases (equivalente a QAM), 8-PSK con 8 fases y así sucesivamente. A mayor número de posibles fases, mayor es la cantidad de información que se puede transmitir utilizando el mismo ancho de banda, pero mayor es también su sensibilidad frente a ruidos e interferencias.
Las modulaciones BPSK y QPSK, derivadas de la modulación por desplazamiento de fase, son óptimas desde el punto de vista de protección frente a errores. En esencia, la diferencia entre distintos símbolos asociados a cada fase es máxima para la potencia y ancho de banda utilizados. No pasa lo mismo con otras variantes tales como la PSK de 8 niveles (8-PSK), la de 16 (16-PSK) o superiores, para las cuales existen otros esquemas de modulación digital más eficientes.
La gran ventaja de las modulaciones PSK es que la potencia de todos los símbolos es la misma, por lo que se simplifica el diseño de los amplificadores y etapas receptoras lo que significa reducción de costos, dado que la potencia de la fuente es constante.
Existen 2 alternativas de modulación PSK: PSK convencional, donde se tienen en cuenta los desplazamientos de fase, y PSK diferencial (DPSK), en la cual se consideran las diferencias entre un salto de fase y el anterior.

MODULACIÓN DIGITAL  : FSK – PSK – QAM

El término comunicaciones digitales abarca un área extensa de técnicas de comunicaciones, incluyendo transmisión digital y radio digital. La transmisión digital es la transmisión de pulsos digitales, entre dos o más puntos, de un sistema de comunicación. El radio digital es la transmisión de portadoras analógicas moduladas, en forma digital, entre dos o más puntos de un sistema de comunicación. Los sistemas de transmisión digital requieren de un elemento físico, entre el transmisor y el receptor, como un par de cables metálicos, un cable coaxial, o un cable de fibra óptica. En los sistemas de radio digital, el medio de transmisión es el espacio libre o la atmósfera de la Tierra.
En un sistema de transmisión digital, la información de la fuente original puede ser en forma digital o analógica. Si está en forma analógica, tiene que convertirse a pulsos digitales, antes de la transmisión y convertirse de nuevo a la forma analógica, en el extremo de recepción. En un sistema de radio digital, la señal de entrada modulada y la sedal de salida demodulada, son pulsos digitales.

RADIO DIGITAL

Los elementos que distinguen un sistema de radio digital de un sistema de radio AM, FM, o PM, es que en un sistema de radio digital, las señales de modulación y demodulación son pulsos digitales, en lugar de formas de ondas analógicas. E1 radio digital utiliza portadoras analógicas, al igual que los sistemas convencionales. En esencia, hay tres técnicas de modulación digital que se suelen utilizar en sistemas de radio digital: transmisión (modulación) por desplazamiento de frecuencia (FSK), transmisión por desplazamiento de fase (PSK), y modulación de amplitud en cuadratura (QAM).

TRANSMISIÓN POR DESPLAZAMIENTO DE FRECUENCIA (FSK)

El FSK binario es una Forma de modulación angular de amplitud constante, similar a la modulación en frecuencia convencional, excepto que la señal modulante es un flujo de pulsos binarios que varía, entre dos niveles de voltaje discreto, en lugar de una forma de onda analógica que cambia de manera continua. La expresión general para una señal FSK binaria es
v(t) = V c cos [ ( w c + v m(t) D w / 2 )t ] (1)
donde v(t) = forma de onda FSK binaria
V c = amplitud pico de la portadora no modulada
w c = frecuencia de la portadora en radianes
v m(t) = señal modulante digital binaria
D w = cambio en frecuencia de salida en radianes
De la ecuación 1 puede verse que con el FSK binario, la amplitud de la portadora V c se mantiene constante con la modulación. Sin embargo, la frecuencia en radianes de la portadora de salida ( w c) cambia por una cantidad igual a ± D w/2. El cambio de frecuencia ( D w/2) es proporcional a la amplitud y polaridad de la señal de entrada binaria. Por ejemplo, un uno binario podría ser +1 volt y un cero binario -1 volt, produciendo cambios de frecuencia de + D w/2 y - D w/2, respectivamente. Además, la rapidez a la que cambia la frecuencia de la portadora es igual a la rapidez de cambio de la señal de entrada binaria v m(t). Por tanto, la frecuencia de la portadora de salida se desvía entre ( w c + D w/2) y ( w c - D w/2) a una velocidad igual a f m (la frecuencia de marca).

TRANSMISOR DE FSK

La salida de un modulador de FSK binario, es una función escalón en el dominio del tiempo. Conforme cambia la señal de entrada binaria de 0 lógico a 1 lógico, y viceversa, la salida del FSK se desplaza entre dos frecuencias: una frecuencia de marca o de 1 lógico y una frecuencia de espacio o de 0 lógico. Con el FSK binario, hay un cambio en la frecuencia de salida, cada vez que la condición lógica de la señal de entrada binaria cambia. Un transmisor de FSK binario sencillo .

CONSIDERACIONES DE ANCHO DE BANDA DEL FSK


Un modulador de FSK binario que a menudo son osciladores de voltaje controlado (VCO). El más rápido cambio de entrada ocurre, cuando la entrada binaria es una onda cuadrada. En consecuencia, si se considera sólo la frecuencia fundamental de entrada, la frecuencia modulante más alta es igual a la mitad de la razón de bit de entrada.
La frecuencia de reposo del VCO se selecciona de tal forma que, cae a medio camino, entre las frecuencias de marca y espacio. Una condición de 1 lógico, en la entrada, cambia el VCO de su frecuencia de reposo a la frecuencia de marca; una condición de 0 lógico, en la entrada, cambia cl VCO de su frecuencia de reposo a la frecuencia de espacio. El índice de modulación en FSK es
MI = Df / f a (2)
donde MI = índice de modulación (sin unidades)
Df = desviación de frecuencia (Hz)
f a = frecuencia modulante (Hz)
El peor caso, o el ancho de banda más amplio, ocurre cuando tanto la desviación de frecuencia y la frecuencia modulante están en sus valores máximos. En un modulador de FSK binario, Df es la desviación de frecuencia pico de la portadora y es igual a la diferencia entre la frecuencia de reposo y la frecuencia de marca o espacio. La desviación de frecuencia es constante y, siempre, en su valor máximo. f a es igual a la frecuencia fundamental de entrada binaria que bajo la condición del peor caso es igual a la mitad de la razón de bit (f b). En consecuencia, para el FSK binario,

donde ï f m - f s ï/ 2 = desviación de frecuencia
f b = razón de bit de entrada
f b /2 = frecuencia fundamental de la señal de entrada binaria
En un FSK binario el índice de modulación, por lo general, se mantiene bajo 1.0, produciendo así un espectro de salida de FM de banda relativamente angosta. Debido a que el FSK binario es una forma de modulación en frecuencia de banda angosta, el mínimo ancho de banda depende del índice de modulación. Para un índice de modulación entre 0.5 y 1, se generan dos o tres conjuntos de frecuencias laterales significativas. Por tanto, el mínimo ancho de banda es dos o tres veces la razón de bit de entrada.

RECEPTOR DE FSK

El circuito que más se utiliza para demodular las señales de FSK binarias es el circuito de fase cerrada (PLL), que se muestra en forma de diagrama a bloques  Conforme cambia la entrada de PLL entre las frecuencias de marca y espacio, el voltaje de error de cc a la salida del comparador de fase sigue el desplazamiento de frecuencia. Debido a que sólo hay dos frecuencias de entrada (marea y espacio), también hay sólo dos voltajes de error de salida. Uno representa un 1 lógico y el otro un 0 lógico. En consecuencia, la salida es una representación de dos niveles (binaria) de la entrada de FSK. Por lo regular, la frecuencia natural del PLL se hace igual a la frecuencia central del modulador de FSK. Como resultado, los cambios en el voltaje de error cc, siguen a los cambios en la frecuencia de entrada analógica y son simétricos alrededor de 0 V.

TRANSMISIÓN DE DESPLAZAMIENTO MÍNIMO DEL FSK

La transmisión de desplazamiento mínimo del FSK (MSK), es una forma de transmitir desplazando la frecuencia de fase continua (CPFSK). En esencia, el MSK es un FSK binario, excepto que las frecuencias de marca y espacio están sincronizadas con la razón de bit de entrada binario. Con MSK, las frecuencias de marca y espacio están seleccionadas, de tal forma que están separadas de la frecuencia central, por exactamente, un múltiplo impar de la mitad de la razón de bit [f m y f s = n( f b / 2 ), con n = entero impar]. Esto asegura que haya una transición de fase fluida, en la señal de salida analógica, cuando cambia de una frecuencia de marca a una frecuencia de espacio, o viceversa.

TRANSMISIÓN DE DESPLAZAMIENTO DE FASE (PSK)

Transmitir por desplazamiento en fase (PSK) es otra forma de modulación angular, modulación digital de amplitud constante. El PSK es similar a la modulación en fase convencional, excepto que con PSK la señal de entrada es una señal digital binaria y son posibles un número limitado de fases de salida.

TRANSMISIÓN POR DESPLAZAMIENTO DE FASE BINARIA (BPSK)

Con la transmisión por desplazamiento de fase binaria (BPSK), son posibles dos fases de salida para una sola frecuencia de portadora. Una fase de salida representa un 1 lógico y la otra un 0 lógico. Conforme la señal digital de entrada cambia de estado, la fase de la portadora de salida se desplaza entre dos ángulos que están 180° fuera de fase. El BPSK es una forma de modulación de onda cuadrada de portadora suprimida de una señal de onda continua.

TRANSMISOR DE BPSK

Un diagrama a bloques simplificado de un modulador de BPSK. El modulador balanceado actúa como un conmutador para invertir la fase. Dependiendo de la condición lógica de la entrada digital, la portadora se transfiere a la salida, ya sea en fase o 180° fuera de fase, con el oscilador de la portadora de referencia.
muestra la tabla de verdad, diagrama fasorial, y diagrama de constelación para un modulador de BPSK. Un diagrama de constelación que, a veces, se denomina diagrama de espacio de estado de señal, es similar a un diagrama fasorial, excepto que el fasor completo no está dibujado. En un diagrama de constelación, sólo se muestran las posiciones relativas de los picos de los fasores.


CONSIDERACIONES DEL ANCHO DE BANDA DEL BPSK

Para BPSK, la razón de cambio de salida, es igual a la razón de cambio de entrada, y el ancho de banda de salida, más amplio, ocurre cuando los datos binarios de entrada son una secuencia alterativa l/0. La frecuencia fundamental (f a) de una secuencia alterativa de bits 1/0 es igual a la mitad de la razón de bit (f b/2). Matemáticamente, la fase de salida de un modulador de BPSK es
(salida) = (frecuencia fundamental de la señal modulante binaria) x (portadora no modulada)
= (sen w a t) x (sen w c t)
= ½cos( w c – w a) – ½cos( w c + w a) (4)
En consecuencia, el mínimo ancho de banda de Nyquist de doble lado (f N) es
2 pf N = ( w c + w a) – ( w c – w a) = 2 w a
y como f a = f b/2, se tiene
f N = 2 w a / 2 p = 2f a = f b (5)
la fase de salida contra la relación de tiempo para una forma de onda BPSK. El espectro de salida de un modulador de BPSK es, sólo una señal de doble banda lateral con portadora suprimida, donde las frecuencias laterales superiores e inferiores están separadas de la frecuencia de la portadora por un valor igual a la mitad de la razón de bit. En consecuencia, el mínimo ancho de banda (f N) requerido, para permitir el peor caso de la señal de salida del BPSK es igual a la razón de bit de entrada.

RECEPTOR DE BPSK

 el diagrama a bloques de un receptor de BPSK. La señal de entrada puede ser +sen w ctósen w ct. El circuito de recuperación de portadora coherente detecta y regenera una señal de portadora que es coherente, tanto en frecuencia como en fase, con la portadora del transmisor original. El modulador balanceado es un detector de producto; la salida es el producto de las dos entradas (la señal de BPSK y la portadora recuperada). El filtro pasa-bajas (LPF) separa los datos binarios recuperados de la señal demodulada compleja.

CODIFICACIÓN EN M-ARIO

M-ario es un término derivado de la palabra “binario”. La M es sólo un dígito que representa el número de condiciones posibles. Las dos técnicas para modulación digital que se han analizado hasta ahora (FSK binario y BPSK), son sistemas binarios; sólo hay dos condiciones posibles de salida. Una representa un 1 lógico y la otra un 0 lógico; por tanto, son sistemas M-ario donde M = 2. Con la modulación digital, con frecuencia es ventajoso codificar a un nivel más alto que el binario. Por ejemplo, un sistema de PSK, con cuatro posibles fases de salida, es un sistema M-ario en donde M = 4. Si hubiera ocho posibles fases de salida, M= 8, etcétera. Matemáticamente,
N = Iog 2 M (6)
en donde N = número de bits
M = número de condiciones de salida posibles con N bits

TRANSMISIÓN POR DESPLAZAMIENTO DE FASE CUATERNARIA (QPSK)

La transmisión por desplazamiento de fase cuaternaria (QPSK) o, en cuadratura PSK, como a veces se le llama, es otra forma de modulación digital de modulación angular de amplitud constante. La QPSK es una técnica de codificación M-ario, en donde M=4 (de ahí el nombre de “cuaternaria”, que significa “4”). Con QPSK son posibles cuatro fases de salida, para una sola frecuencia de la portadora. Debido a que hay cuatro fases de salida diferentes, tiene que haber cuatro condiciones de entrada diferentes. Ya que la entrada digital a un modulador de QPSK es una señal binaria (base 2), para producir cuatro condiciones diferentes de entrada, se necesita más de un solo bit de entrada. Con 2 bits, hay cuatro posibles condiciones: 00, 01, 10 y 11. En consecuencia, con QPSK, los datos de entrada binarios se combinan en grupos de 2 bits llamados dibits. Cada código dibit genera una de las cuatro fases de entrada posibles. Por tanto, para cada dibit de 2 bits introducidos al modulador, ocurre un sola cambio de salida. Así que, la razón de cambio en la salida es la mitad de la razón de bit de entrada.

TRANSMISOR DE QPSK

Un diagrama a bloques de un modulador de QPSK. Dos bits (un dibit) se introducen al derivador de bits. Después que ambos bits han sido introducidos, en forma serial, salen simultáneamente en forma paralela. Un bit se dirige al canal I y el otro al canal Q. El bit I modula una portadora que está en fase con el oscilador de referencia (de ahí el nombre de “I” para el canal “en fase”), y el bit Q modula una portadora que está 90° fuera de fase o en cuadratura con la portadora de referencia (de ahí el nombre de “Q” para el canal de “cuadratura”).

Puede verse que una vez que un dibit ha sido derivado en los canales I y Q, la operación es igual que en el modulador de BPSK. En esencia, un modulador de QPSK son dos moduladores, de BPSK, combinados en paralelo.
En la figura 9 puede verse que, con QPSK, cada una de las cuatro posibles fases de salida tiene, exactamente, la misma amplitud. En consecuencia, la información binaria tiene que ser codificada por completo en la fase de la señal de salida.

CONSIDERACIONES DE ANCHO DE BANDA PARA EL QPSK

Con QPSK, ya que los datos de entrada se dividen en dos canales, la tasa de bits en el canal I, o en el canal Q, es igual a la mitad de la tasa de datos de entrada (f b/2). En consecuencia, la frecuencia fundamental, más alta, presente en la entrada de datos al modulador balanceado, I o Q, es igual a un cuarto de la tasa de datos de entrada (la mitad de f b/2: f b/4). Como resultado, la salida de los moduladores balanceados, I y Q, requiere de un mínimo ancho de banda de Nyquist de doble lado, igual a la mitad de la tasa de bits que están entrando.
f N = 2(f b/4) = f b/2 (7)
Por tanto con QPSK, se realiza una compresión de ancho de banda (el ancho de banda mínimo es menor a la tasa de bits que están entrando).

RECEPTOR DE QPSK

El diagrama a bloques de un receptor QPSK se muestra en la figura 10. El derivador de potencia dirige la señal QPSK de entrada a los detectores de producto, I y Q, y al circuito de recuperación de la portadora. El circuito de recuperación de la portadora reproduce la señal original del modulador de la portadora de transmisión. La portadora recuperada tiene que ser coherente, en frecuencia y fase, con la portadora de referencia transmisora. La señal QPSK se demodula en los detectores de producto, I y Q, que generan los bits de datos, I y Q, originales. Las salidas de los detectores de productos alimentan al circuito para combinar bits, donde se convierten de canales de datos, I y Q, paralelos a un solo flujo de datos de salida binarios.

PSK DE OCHO FASES (8-PSK)

Un PSK de ocho fases (8-PSK), es una técnica para codificar M-ario en donde M= 8. Con un modulador de 8-PSK, hay ocho posibles fases de salida. Para codificar ocho fases diferentes, los bits que están entrando se consideran en grupos de 3 bits, llamados tribits (2 3 = 8).

TRANSMISOR PSK DE OCHO FASES

Un diagrama a bloques de un modulador de 8-PSK se muestra en la figura 11. El flujo de bits seriales que están entrando se introduce al desplazador de bits, en donde se convierte a una salida paralela de tres canales (el canal I, o en fase; el canal Q, o en cuadratura y el canal C, o de control). En consecuencia, la tasa de bits, en cada uno de los tres canales, es f b/3. Los bits en los canales I y C’ (C negado), entran al convertidor de los niveles 2 a 4 del canal I, y los bits en los canales Q y C’ entran el convertidor de los niveles 2 a 4, del canal Q. En esencia, los convertidores de los niveles 2 a 4 son convertidores digital a análogo (DAC) de entrada paralela. Con 2 bits de entrada, son posibles cuatro voltajes de salida. El algoritmo para los DAC es bastante sencillo. El bit I o Q determina la polaridad de la señal analógica de salida (1 lógico = +V y 0 lógico = –V), mientras que la C o el bit C’ determina la magnitud (1 lógico = 1.307V y 0 lógico = 0.541V). En consecuencia, con dos magnitudes y dos polaridades, son posibles cuatro condiciones de salida diferentes.
puede verse que la separación angular, entre cualquiera de dos fasores adyacentes, es de 45°, la mitad de lo que es con QPSK. Por tanto, una señal 8-PSK puede experimentar un cambio de fase de casi ±22.5°, durante la transmisión, y todavía tener su integridad. Además, cada fasor es de igual magnitud; la condición tribit (información actual) se contiene, de nuevo, sólo en la fase de la señal.

CONSIDERACIONES DEL ANCHO DE BANDA PARA EL 8-PSK

Con el 8-PSK ya que los datos se dividen en tres canales, la tasa de bits en el canal I, Q, o C, es igual a un tercio de la tasa de datos de entrada binarios (f b/3), (El derivador de bits estira los bits I, Q y C a tres veces su longitud de bit de entrada). Debido a que los bits I, Q y C tienen una salida simultánea y en paralelo, los convertidores de nivela de 2 a 4, también ven un cambio en sus entradas (y en consecuencia sus salidas) a una tasa igual a f b/3.


RECEPTOR 8-PSK

muestra un diagrama a bloques de un receptor de 8-PSK. El derivador de potencia dirige la señal de 8-PSK de entrada, a los detectores de producto I y Q, y al circuito de recuperación de la portadora. El circuito de recuperación de la portadora reproduce la señal original del oscilador de referencia. La señal de 8-PSK que está entrando se mezcla con la portadora recuperada, en el detector de productos I y con un portadora de cuadratura en el detector de producto Q. Las salidas de los detectores de producto son señales PAM, de nivel 4, que alimentan a los convertidores análogos a digital (ADC), del nivel 4 a 2. Las salidas del convertidor de nivel 4 a 2, canal I, son los bits I y C, mientras que las salidas del convertidor de nivel 4 a 2, canal Q, son los bits Q y C’. El circuito lógico de paralelo a serial conviene los pares de bit, I/C y Q/C’, a flujos de datos de salida serial I, Q y C.

PSK DE DIECISÉIS FASES (16-PSK)

El PSK de dieciséis fases (16-PSK) es una técnica de codificación M-ario, en donde M = 16; hay 16 diferentes fases de salida posibles. Un modulador de 16-PSK actúa en los datos que están entrando en grupos de 4 bits (2 4 = 16), llamados quadbits (bits en cuadratura). La fase de salida no cambia, hasta que 4 bits han sido introducidos al modulador. Por tanto, la razón de cambio de salida y el mínimo ancho de banda son iguales a un cuarto de la tasa de bits que están entrando (f b/4). La tabla de verdad y el diagrama de constelación para un transmisor de 16-PSK .

MODULACIÓN DE AMPLITUD EN CUADRATURA (QAM)

La modulación de amplitud en cuadratura (QAM), es una forma de modulación digital en donde la información digital está contenida, tanto en la amplitud como en la fase de la portadora trasmitida.

QAM DE OCHO (8-QAM)

El QAM de ocho (8-QAM), es una técnica de codificación M-ario, en donde M = 8. A diferencia del 8-PSK, la señal de salida de un modulador de 8-QAM no es una señal de amplitud constante.

TRANSMISOR DE QAM DE OCHO

 el diagrama a bloques de un transmisor de 8-QAM. Como pueda verse, la única diferencia, entre el transmisor de 8-QAM y el transmisor de 8-PSK es la omisión del inversor entre el canal C y el modulador da producto Q.


CONSIDERACIONES DEL ANCHO DE BANDA PARA EL QAM DE OCHO

En el 8-QAM, la tasa de bits, en los canales I y Q, es un tercio de la tasa binaria de entrada, al igual que con el 8-PSK. Como resultado, la frecuencia de modulación fundamental más alta y la razón de cambio de salida más rápida en 8-QAM, son iguales que para el 8-PSK. Por tanto, el mínimo ancho de banda requerido para 8-QAM es f b/3, al igual que en el 8-PSK.

RECEPTOR DE QAM DE OCHO

Un receptor de 8-QAM es casi idéntico al receptor de 8-PSK. Las diferencias son los niveles PAM, en la salida de los detectores de producto, y las señales binarias a la salida de los convertidores análogo a digital. Debido a que hay dos amplitudes de transmisión posibles, con 8-QAM, que son diferentes de aquellas factibles con el 8-PSK, los cuatro niveles PAM demodulados son diferentes de aquellos en 8-PSK. En consecuencia, el factor de conversión para los convertidores analógico a digital, también tienen que ser diferentes. Además, con el 8-QAM las señales de salida binarias del convertidor analógico a digital, del canal I, son los bits I y C, y las señales de salida binarias del convertidor analógico a digital, del canal Q, son los bits Q y C.

QAM DE DIECISÉIS (16-QAM)

Así como en 16-PSK, el 16-QAM es un sistema M-ario, en donde M= 16. Actúa sobre los datos de entrada en grupos de cuatro (2 4 = l6). Como con el 8-QAM, tanto la fase y la amplitud de la portadora transmisora son variados.

TRANSMISOR QAM DE DIECISÉIS

El diagrama a bloques para un transmisor de 16-QAM . Los datos de entrada binaria se dividen en cuatro canales: El I, I’, Q y Q’. La tasa de bits de rada canal es igual a un cuarto de la tasa de bits de entrada (f b/4)

CONSIDERACIONES DEL ANCHO DE BANDA PARA EL QAM DE DIECISÉIS

Con el l6-QAM, ya que los datos de entrada se dividen en cuatro canales, la tasa de bits en el canal I, I’, Q o Q’ es igual a un cuarto de la tasa de datos de entrada binarios (f b/4). (El derivador de bits estira los bits I, I’, Q y Q’, a cuatro veces su longitud de bits de entrada). Además, debido a que estos bits tienen salidas de manera simultánea y en paralelo, los convertidores de nivel 2 a 4 ven un cambio en sus entradas y salidas a una fase igual a un cuarto de la tasa de datos de entrada.

RESUMEN DE FSK, PSK Y QAM

Las distintas formas de FSK, PSK y QAM se resumen en la tabla 1
Modulación
Codificación
BW (Hz)
Baudio
Eficiencia BW (bps/Hz)
FSK
Bit
á f b
f b
[1
BPSK
Bit
f b
f b
1
QPSK
Dibit
f b / 2
f b / 2
2
8-QPSK
Tribit
f b / 3
f b / 3
3
8-QAM
Tribit
f b / 3
f b / 3
3
16-QPSK
Quadbit
f b / 4
f b / 4
4
16-QAM
Quadbit
f b / 4
f b / 4
4
TABLA 1: RESUMEN DE LA MODULACIÓN DIGITAL

3.3  CONVERSIÓN ANALÓGICO – DIGITAL
MUESTREO, CUANTIZACIÓN Y CODIFICACIÓN.
CONVERSIÓN ANALÓGICA DIGITAL
La conversión analógica-digital o digitalización, consiste básicamente en realizar de forma periódica medidas de la amplitud de la señal de entrada y traducirlas a un lenguaje numérico. La conversión A/D también es conocida por el acrónimo inglés ADC (analogicto digital converter).
COMPARACIÓN DE LAS SEÑALES ANALÓGICA Y DIGITAL
Una señal analógica es aquélla que puede tomar una infinidad de valores (frecuencia y amplitud) dentro de un límite superior e inferior. El término analógico proviene de análogo. Por ejemplo, si se observa en un osciloscopio, la forma de la señal eléctrica en que convierte un micrófono el sonido que capta, ésta sería similar a la onda sonora que la originó.
En cambio, una señal digital es aquélla cuyas dimensiones (tiempo y amplitud) no son continuas sino discretas, lo que significa que la señal necesariamente ha de tomar unos determinados valores fijos predeterminados en momentos también discretos. Estos valores fijos se toman del sistema binario, lo que significa que la señal va a quedar convertida en una combinación de ceros y unos, que ya no se parece en nada a la señal original. Precisamente, el término digital tiene su origen en esto, en que la señal se construye a partir de números (dígitos).
¿POR QUÉ DIGITALIZAR?
Ventajas de la señal digital
Ante la atenuación, la señal digital puede ser amplificada y al mismo tiempo reconstruida gracias a los sistemas de regeneración de señales.
Cuenta con sistemas de detección y corrección de errores que se utilizan cuando la señal llega al receptor, entonces comprueban la señal (uso de redundancia), primero para detectar algún error, y, algunos sistemas, pueden luego corregir alguno o todos los errores detectados previamente.  Facilidad para el procesamiento de la señal. Cualquier operación es fácilmente realizable a través de cualquier software de edición o procesamiento de señales.  La señal digital permite la multiregeneración infinita sin pérdidas de calidad. Esta ventaja sólo es aplicable a los formatos de disco óptico; la cinta magnética digital, aunque en menor medida que la analógica (que sólo soporta como mucho 4 o 5 generaciones), también va perdiendo información con la           multi regeneración. Inconvenientes de la señal digital  La señal digital requiere mayor ancho de banda para ser transmitida que la analógica. Se necesita una conversión analógica-digital previa y una decodificación posterior, en el momento de la recepción.  La transmisión de señales digital requiere una sincronización precisa entre los tiempos del reloj de transmisor, con respecto a los del receptor. Un desfase cambia la señal recibida con respecto a la que fue transmitida.
EL PROCESO DE CONVERSIÓN ANALÓGICO–DIGITAL
El proceso de conversión analógico digital consta básicamente de 4 etapas: MuestreoCuantización Codificación  Recodificación Digital-Digital para transmisión
EL MUESTREO
El muestreo (en inglés, sampling) consiste en tomar muestras periódicas de la amplitud de onda. La velocidad con que se toman esta muestra, es decir, el número de muestras por segundo, es lo que se conoce como frecuencia de muestreo y está en función del teorema de Nyquist, que indica que la frecuencia de muestreo (fs) será el doble de la frecuencia máxima (fm) de la señal a muestrear, por ejemplo, si tenemos una señal de audio con un ancho de banda de 20 Hz a 22,500 Hz, su frecuencia máxima sería fm =22,500 Hz, por lo tanto su frecuencia de muestreo sería:
LA CUANTIFICACIÓN
Básicamente, la cuantificación lo que hace es convertir una sucesión de muestras de amplitud continua en una sucesión de valores discretos preestablecidos según el código utilizado. Durante el proceso de cuantificación se mide el nivel de tensión de cada una de las muestras, obtenidas en el proceso de muestreo, y se les atribuye a un valor finito (discreto) de amplitud, seleccionado por aproximación dentro de un margen de niveles previamente fijado.
Los valores preestablecidos para ajustar la cuantificación se eligen en función de la propia resolución que utilice el código empleado durante la codificación. Si el nivel obtenido no coincide exactamente con ninguno, se toma como valor el inferior más próximo. En este momento, la señal analógica (que puede tomar cualquier valor) se convierte en una señal digital, ya que los valores que están preestablecidos, son finitos.
No obstante, todavía no se traduce al sistema binario. La señal ha quedado representada por un valor finito que durante la codificación, será cuando se transforme en una sucesión de ceros y unos.
Así pues, la señal digital que resulta tras la cuantificación es sensiblemente diferente a la señal eléctrica analógica que la originó, por lo que siempre va a existir una cierta diferencia entre ambas que es lo que se conoce como error de cuantificación, que se produce cuando el valor real de la muestra  no equivale a ninguno de los escalones disponibles para su aproximación y la distancia entre el valor real y el que se toma como aproximación es muy grande. Un error de cuantificación se convierte en un ruido cuando se reproduzca la señal tras el proceso de decodificación digital.
TIPOS DE CUANTIFICACIÓN
Para minimizar los efectos negativos del error de cuantificación, se utilizan distintas técnicas de cuantificación:
Cuantificación uniforme o lineal. Se utiliza un bit rate constante. A cada muestra se le asigna el valor inferior más próximo, independientemente de lo que ocurra con las muestras adyacentes.  Cuantificación no uniforme o no lineal. Se estudia la propia entropía de la señal analógica y se asignan niveles de cuantificación de manera no uniforme (bit rate variable) de tal modo que, se asigne un mayor número de niveles para aquellos márgenes en que la amplitud de la tensión cambia más rápidamente. Cuantificación logarítmica: Se hace pasar la señal por un compresor logarítmico antes de la cuantificación. Como en la señal resultante la amplitud del voltaje sufre variaciones menos abruptas la posibilidad de que se produzca un ruido de cuantificación grande disminuye. Antes de reproducir la señal digital, esta tendrá que pasa por un expansor. Cuantificación vectorial En lugar de cuantificar las muestras obtenidas individualmente, se cuantifica por bloques de muestras. Cada bloque de muestras será tratado como si se tratara de un vector, de ahí, el nombre de esta tipología.
LA CODIFICACIÓN
La codificación consiste en la traducción de los valores de tensión eléctrica analógicos que ya han sido cuantificados (ponderados) al sistema binario, mediante códigos preestablecidos. La señal analógica va a quedar transformada en un tren de impulsos digital.



ASPECTOS GENERALES DE LA CODIFICACIÓN
El códec es el código específico que se utiliza para la codificación/decodificación de los datos. Precisamente, la palabra Códec es una abreviatura de Codificador-Decodificador. Parámetros que definen el códec Número de canales: Indica el tipo de señal con que se va a tratar: monoaural, binaural o multicanal  Frecuencia de muestreo: La frecuencia o tasa de muestreo se refiere a la cantidad de muestras de amplitud tomadas por unidad de tiempo en el proceso de muestreo. De acuerdo con el Teorema de muestreo de Nyquist-Shannon, la tasa de muestreo sólo determinará el ancho de banda base de la señal muestreada, es decir, limitará la frecuencia máxima de los componentes sinusoidales que forman una onda periódica. De acuerdo con este teorema, y siempre desde la perspectiva metemática, una mayor tasa de muestreo para una señal no debe interpretarse como una mayor fidelidad en la reconstrucción de la señal. El proceso de muestreo es reversible, lo que quiere decir que, desde el punto de vista matemático, la reconstrucción se puede realizar en modo exacto (no aproximado). La tasa de muestreo se determina multiplicando por dos el ancho de banda base de la señal a muestrear y, añadiendo un margen (un 10% en CD-Audio, por ejemplo) para contemplar las limitaciones prácticas de los filtros no ideales (reales).
Resolución (Número de bits): Determina la precisión con la que se reproduce la señal original. Se suelen utilizar 8, 10, 16 o 24 bits por muestra. Mayor precisión a mayor número de bits.  Bit rate: El bit rate es la velocidad o tasa de transferencia de datos. Su unidad es el bit por segundo (bps). Pérdida: Algunos códecs al hacer la compresión eliminan cierta cantidad de información, por lo que la señal resultante, no es igual a la original (compresión con pérdidas).
EJEMPLOS DE CÓDEC
Codificación del sonido: Utiliza un tipo de códec (código) específicamente diseñado para la compresión y descompresión de señales de audio: el códec de audio CDA  PAM (Modulación de amplitud de pulsos). La frecuencia de la portadora debe ser al menos mayor que el doble de la frecuencia de la señal moduladora. Realiza una cuantificación lineal de la amplitud de la señal analógica. Actualmente, la principal aplicación principal de una codificación PAM se encuentra en la transmisión de señales, pues permite el multiplexado (enviar más de una señal por un sólo canal). PCM (Pulse Code Modulated) cuya resolución es de 8 bits (1 byte. Utiliza la modulación PAM .




3.4 CODIGOS DE LINEA RZ, NRZ, NRZ-L, AMI, PSEUDO-TERNARIA,
MANCHESTER, MANCHESTER DIFERENCIAL, B8ZS,
HDB3, ENTRE OTROS.
En telecomunicaciones, un código en línea (modulación en banda base) es un código utilizado en un sistema de comunicación para propósitos de transmisión.
Los códigos en línea son frecuentemente usados para el transporte digital de datos. Éstos códigos consisten en representar la señal digital transportada respecto a su amplitud respecto al tiempo. La señal está perfectamente sincronizada gracias a las propiedades específicas de la capa física. La representación de la onda se suele realizar mediante un número determinado de impulsos. Estos impulsos representan los 1s y los 0s digitales. Los tipos más comunes de codificación en línea son el unipolar, polar, bipolar y Manchester.
Después de la codificación en línea, la señal se manda a través de la capa física. A veces las características de dos canales aparentemente muy diferentes son lo suficientemente parecidos para que el mismo código sea usado por ellos.

v CÓDIGO DE LÍNEA RZ

Retorno a Cero (RZ) es un sistema de codificación usado en telecomunicaciones en el cual la señal que representa a cada bit retorna a cero en algún instante dentro del tiempo del intervalo de bit. Por tanto, las secuencias largas de “unos” o de “ceros” ya no plantean problemas para la recuperación del reloj en el receptor.
No es necesario enviar una señal de reloj adicional a los datos. Esta codificación tiene el problema de utilizar el doble de ancho de banda para conseguir transmitir la misma información que los Códigos NRZ.
Los códigos de “retorno a cero” RZ trabajan con impulsos estrechos de menor duración que el intervalo de bit. El ciclo de trabajo es el parámetro que mide la anchura del impulso RZ. Se define como la relación porcentual entre la duración de los impulsos ( Ti ) y el tiempo del intervalo de bit ( T b) : 
Los impulsos muy estrechos ahorran energía, pero exigen mayor ancho de banda. Los códigos RZ utilizan generalmente un ciclo de trabajo ct = 50 % ( en los sistemas ópticos < 30 % para aprovechar la vida útil del láser ).
En telecomunicaciones, se denomina NRZ porque el voltaje no vuelve a cero entre bits consecutivos de valor uno.
Mediante la asignación de un nivel de tensión a cada símbolo se simplifica la tarea de decodificar un mensaje. Esta es la teoría que desarrolla el código NRZ (non returntozero). La decodificación en banda base se considera como una disposición diferente de los bits de la señal on/off, de este modo se adapta la señal al sistema de transmisión utilizado. Para ello se emplean los códigos tipo NRZ.
Una clasificación atendiendo a las modulaciones situaría el código NRZ dentro de las portadoras digitales y las moduladoras digitales como los códigos Manchester, Bifase, RDSI, etc.uetc
Atendiendo a la forma de onda binaria se pueden clasificar estos códigos como unipolares (el voltaje que representa los bits varía entre 0 voltios y +5voltios). Este tipo de código no es recomendable en largas distancias principalmente por dos motivos. En primer lugar presentan niveles residuales de corriente continua y en segundo lugar por la posible ausencia de suficientes números de transiciones de señal que permitan la recuperación fiable de una señal de temporización.
Los polares desplazan el nivel de referencia de la señal reduciendo a la mitad la diferencia de potencial necesaria con referencia a la Unipolar.
En el receptor y el transmisor se debe efectuar un muestreo de igual frecuencia.
Este código no es autosincronizante, y su principal ventaja es que al emplear pulsos de larga duración requiere menor ancho de banda que otros sistemas de codificación que emplean pulsos más cortos.
Dentro de los códigos NRZ se establece una clasificación, pudiendo tratar códigos del tipo NRZ-L o NRZ-I.
NRZ-L (No se retorna a nivel cero).
Donde 0 representa el nivel alto y 1 el nivel bajo.
NRZ-I (No se retorna a 0 y se invierte al transmitir el 1).
Al transmitir un 0 no se produce transición y en cambio al enviar un 1 se produce una transición a nivel positivo o negativo.

En esta codificación, el nivel de la señal depende del tipo de bit que representa, habitualmente un valor de tensión positiva indica que el bit es un 0 y un valor de tensión negativa indica que el bit es un 1 por tanto el nivel de la señal depende del estado del bit. cuando hay un flujo grande de ceros o unos en los datos puede surgir el problema de la sincronización.
SINCRONIZACIÓN Cuando una señal no varía, el receptor no puede determinar el principio y el final decada bit, siempre que el flujo de datos contenga una larga serie ininterrumpida de ceros o unos características

Dos niveles diferentes de tensión para cada uno de los dígitos binarios 0 y 1.Ø El nivel de tensión se mantiene constante durante la duración del bit: No hay transiciones, es decir, no hay retorno al nivel cero de tensión.





v CODIGO DE LINEA AMI

Transmisión Bipolar o AMI (Alternate Marks Inverted)
En el  código AMI  un 0 binario se representa por ausencia de señal y el 1 binario por pulsos de polaridad alternante (positivo o negativo). Este tipo de esquema ofrece la ventaja de que la sincronización es más fácil, de hecho, sólo la aparición de largas cadenas de ceros la dificulta. Además, no hay componentes de continua en la señal debido a la alternancia de los pulsos. La alternancia de los unos facilita la detección de errores.
AMI Bipolar (Alternate Mark Inversion):
                                            Cero --- No hay señal.
                                            Uno  --- Pulso positivo o negativo de forma alterna.


v PSEUDOTERNARIO.

Las técnicas de codificación denominadas binario multinivel subsanan algunas de las deficiencias mencionadas para los códigos NRZ. En el caso del esquema bipolar Pseudoternario, un 1 binario se representa por ausencia de señal y el 0 binario se representa como un pulso negativo o positivo. Los pulsos correspondientes a 0 deben tener una polaridad alternante, es decir codificando los "ceros" con impulsos de polaridad alternativa y los "unos" mediante ausencia de impulsos al contrario de la codificación AMI bipolar, el código resultante se denomina Pseudoternario.
Los códigos Pseudoternario se han desarrollado para paliar los inconvenientes que presentan los códigos binarios NRZ y RZ (el sincronismo y la corriente continua).
El código Pseudoternario al igual que el AMI consigue anular la componente continua de la señal eléctrica. Sin embargo no resuelve la cuestión de cómo evitar la pérdida de la señal de reloj cuando se enciman largas secuencias de ceros. Este problema lo solucionan los códigos bipolares de alta densidad de orden N, HDBN (HighDensitaBipolar) que pertenecen a la misma familia de códigos, y que evitan la transmisión de secuencias con más de N "ceros" consecutivos.
Las ventajas de este esquema son:
No habrá problemas de sincronización en el caso de que haya una cadena larga de 0.
Cada 0 fuerza una transición, por lo que el receptor se puede sincronizar en dicha transición.
Además el ancho de banda de la señal resultante es mucho menor que el correspondiente a NRZ.
Uno de losproblemas todavía no resueltos es una cadena larga de 1 y el grado de sincronización de estos códigos.


v CODIGO LINEA  MANCHESTER
La codificación Manchester, también denominada codificación bifase-L, es un método de codificación eléctrica de una señal binaria en el que en cada tiempo de bit hay una transición entre dos niveles de señal. Es una codificación autosincronizada, ya que en cada bit se puede obtener la señal de reloj, lo que hace posible una sincronización precisa del flujo de datos. Una desventaja es que consume el doble de ancho de banda que una transmisión asíncrona. Hoy en día hay numerosas codificaciones (8b/10b) que logran el mismo resultado pero consumiendo menor ancho de banda que la codificación Manchester.

·         Las señales de datos y de reloj, se combinan en una sola que auto-sincroniza el flujo de datos.
·         Cada bit codificado contiene una transición en la mitad del intervalo de duración de los bits.
·         Una transición de negativo a positivo representa un 1 y una transición de positivo a negativo representa un 0.
Los códigos Manchester tienen una transición en la mitad del periodo de cada bit. Cuando se tienen bits iguales y consecutivos se produce una transición al inicio del segundo bit, la cual no es tenida en cuenta por el receptor al momento de decodificar, solo las transiciones separadas uniformemente en el tiempo son las que son consideradas por el receptor. Hay algunas transiciones que no ocurren a mitad de bit. Estas transiciones no llevan información útil, y solo se usan para colocar la señal en el siguiente estado donde se llevará a cabo la siguiente transición. Aunque esto permite a la señal auto-sincronizarse, en realidad lo que hace es doblar el requerimiento de ancho de banda, en comparación con otros códigos como por ejemplo los Códigos NRZ.

La codificación Manchester es sólo un caso especial de la Modulación por desplazamiento de fase, donde los datos que van a ser transmitidos controlan la fase de una onda rectangular portadora. Para controlar la cantidad de ancho de banda consumida, se puede usar un filtro para reducir el ancho de banda hasta un valor bajo como 1Hz por bit/segundo, y mantenerlo para no perder información durante la transmisión.

Como ventajas principales se pueden destacar las siguientes:
·         La codificación Manchester o codificación bifase-L es autosincronizada: provee una forma simple de codificar secuencias de bits, incluso cuando hay largas secuencias de periodos sin transiciones de nivel que puedan significar la pérdida de sincronización, o incluso errores en las secuencias de bits. Por ello es altamente fiable.
·         Detección de retardos: directamente relacionado con la característica anterior, a primera vista podría parecer que un periodo de error de medio bit conduciría a una salida invertida en el extremo receptor, pero una consideración más cuidadosa revela que para datos típicos esto llevaría a violaciones de código. El hardware usado puede detectar esas violaciones de código, y usar esta información para sincronizar adecuadamente en la interpretación correcta de los datos.
·         Esta codificación también nos asegura que la componente continua de las señales es cero si se emplean valores positivos y negativos para representar los niveles de la señal, haciendo más fácil la regeneración de la señal, y evitando las pérdidas de energía de las señales.
Las principales desventajas asociadas son las siguientes:
·         Ancho de banda del doble de la señal de datos: una consecuencia de las transiciones para cada bit es que el requerimiento del ancho de banda para la codificación Manchester es el doble comparado en las comunicaciones asíncronas, y el espectro de la señal es considerablemente más ancho. La mayoría de los sistemas modernos de comunicación están hechos con protocolos con líneas de codificación que persiguen las mismas metas, pero optimizan mejor el ancho de banda, haciéndolo menor.}

v CODIGO DE MANCHESTER

La Codificación Manchester diferencial (también CDP; ConditionalDePhaseencoding) es un método de codificación de datos en los que los datos y la señal reloj están combinados para formar un único flujo de datos auto-sincronizable. Es una codificación diferencial que usa la presencia o ausencia de transiciones para indicar un valor lógico. Esto aporta algunas ventajas sobre la Codificación Manchester:
·         Detectar transiciones es a menudo menos propenso a errores que comparar con tierra en un entorno ruidoso.
·         La presencia de la transición es importante pero no la polaridad. La codificaciones diferenciales funcionarán exactamente igual si la señal es invertida (cables intercambiados).
Un bit '1' se indica haciendo en la primera mitad de la señal igual a la última mitad del bit anterior, es decir, sin transición al principio del bit. Un bit '0' se indica haciendo la primera mitad de la señal contraria a la última mitad del último bit, es decir, con una transición al principio del bit. En la mitad del bit hay siempre una transición, ya sea de high hacia low o viceversa. Una configuración inversa es posible, y no habría ninguna desventaja en su uso.
Un método relacionado es la Codificación Manchester en el cual las transiciones significativas son las de la mitad del bit, codificando los datos por su dirección (positivo-negativo es valor '1', negativo-positivo es el otro).
Manchester Diferencial está especificado en el IEEE 802.5 estándar para Redes Token Ring, y es usado para otras muchas aplicaciones, incluyendo el almacenamiento magnético y óptico.
Nota: En la codificación Manchester Diferencial, si el '1 es representado por una transición, entonces el '0' es representado por 2 transiciones y viceversa.


v CODIGO HDB3


En HDB3 consiste en sustituir secuencias de bits que provocan niveles de tensión constantes por otras que garantizan la anulación de la componente continua y la sincronización del receptor. La longitud de la secuencia queda inalterada, por lo que la velocidad de transmisión de datos es la misma; además el receptor debe ser capaz de reconocer estas secuencias de dato

Los objetivos en el diseño de estas técnicas son:

Evitar la componente en continua.
Evitar las secuencias largas que correspondan a señales de tensión nula.



3.7 MODEM, ESTÁNDARES Y PROTOCOLOS
Módem (acrónimo de Modulación Demodulación -del acrónimo en inglés Modulator Demodulator-; pl. módems) es el dispositivo que convierte las señales digitales en analógicas (modulación) y viceversa (demodulación), permitiendo la comunicación entre computadoras a través de la línea telefónica o del cablemódem. Este aparato sirve para enviar la señal moduladora mediante otra señal llamada portadora.
Se han usado módems desde los años 60, principalmente debido a que la transmisión directa de las señales electrónicas inteligibles, a largas distancias, no es eficiente, por ejemplo, para transmitir señales de audio por el aire, se requerirían antenas de gran tamaño (del orden de cientos de metros) para su correcta recepción. Es habitual encontrar en muchos módems de red conmutada la facilidad de respuesta y marcación automática, que les permiten conectarse cuando reciben una llamada de la RTPC (Red Telefónica Pública Conmutada) y proceder a la marcación de cualquier número previamente grabado por el usuario. Gracias a estas funciones se pueden realizar automáticamente todas las operaciones de establecimiento de la comunicación.
El modulador emite una señal denominada portadora. Generalmente, se trata de una simple señal eléctrica sinusoidal de mucha mayor frecuencia que la señal moduladora. La señal moduladora constituye la información que se prepara para una transmisión (un módem prepara la información para ser transmitida, pero no realiza la transmisión). La moduladora modifica alguna característica de la portadora (que es la acción de modular), de manera que se obtiene una señal, que incluye la información de la moduladora. Así el demodulador puede recuperar la señal moduladora original, quitando la portadora. Las características que se pueden modificar de la señal portadora son:
Amplitud, dando lugar a una modulación de amplitud (AM/ASK).
Frecuencia, dando lugar a una modulación de frecuencia (FM/FSK).
Fase, dando lugar a una modulación de fase (PM/PSK)
También es posible una combinación de modulaciones o modulaciones más complejas como la modulación de amplitud en cuadratura.
La distinción principal que se suele hacer es entre módems internos y módems externos, aunque recientemente han aparecido módems llamados "módems software", más conocidos como "winmódems" o "linuxmódems", que han complicado un poco el panorama. También existen los módems para XDSLRDSI, etc. y los que se usan para conectarse a través de cable coaxial de 75 ohms (cable módems).
Internos: consisten en una tarjeta de expansión sobre la cual están dispuestos los diferentes componentes que forman el módem. Existen para diversos tipos de conector:
Bus ISA: debido a las bajas velocidades que se manejan en estos aparatos, durante muchos años se utilizó en exclusiva este conector, hoy en día en desuso (obsoleto).
Bus PCI: el formato más común en la actualidad, todavía en uso.
AMR: en algunas placas; económicos pero poco recomendables por su bajo rendimiento. Hoy es una tecnología obsoleta.
La principal ventaja de estos módems reside en su mayor integración con el ordenador, ya que no ocupan espacio sobre la mesa y reciben energía eléctrica directamente del propio ordenador. Además, suelen ser algo más baratos debido a que carecen de carcasa y transformador, especialmente si son PCI (en este caso, son casi todos del tipo "módem software"). Por el contrario, son algo más complejos de instalar y la información sobre su estado sólo puede obtenerse por software.
Externos: semejantes a los anteriores, pero externos al ordenador o PDA. La ventaja de estos módems reside en su fácil portabilidad entre ordenadores previamente distintos entre ellos (algunos de ellos más fácilmente transportables y pequeños que otros), además de que es posible saber el estado del módem (marcando, con/sin línea, transmitiendo...) mediante los leds de estado que incorporan. Por el contrario, y obviamente, ocupan más espacio que los internos.

La conexión de los módems telefónicos externos con el ordenador se realiza generalmente mediante uno de los puertos serie tradicionales o COM (RS232), por lo que se usa la UART del ordenador, que deberá ser capaz de proporcionar la suficiente velocidad de comunicación. La UART debe ser de 16550 o superior para que el rendimiento de un módem de 28.800 bit/s o más sea el adecuado. Estos módems necesitan un enchufe para su transformador.
Módems PC Card: son módems en forma de tarjeta, que se utilizaban en portátiles, antes de la llegada del USB (PCMCIA). Su tamaño es similar al de una tarjeta de crédito algo más gruesa, pero sus capacidades son las mismas que los modelos estándares.
Existen modelos para puerto USB, de conexión y configuración aún más sencillas, que no necesitan toma de corriente. Hay modelos tanto para conexión mediante telefonía fija, como para telefonía móvil.
Módems completos: los módems clásicos no HSP, bien sean internos o externos. En ellos, el rendimiento depende casi exclusivamente de la velocidad del módem y de la UART del ordenador, no del microprocesador.
Su uso más común y conocido es en transmisiones de datos por vía telefónica.
Las computadoras procesan datos de forma digital; sin embargo, las líneas telefónicas de la red básica sólo transmiten señales analógicas.
Los métodos de modulación y otras características de los módems telefónicos están estandarizados por el UIT-T (el antiguo CCITT) en la serie de Recomendaciones "V". Estas Recomendaciones también determinan la velocidad de transmisión. Destacan:
·         V.21. Comunicación Full Duplex entre dos módems analógicos realizando una variación en la frecuencia de la portadora de un rango de 300 baudios, logrando una transferencia de hasta 300 bit/s (bits por segundo).
·         V.22. Comunicación Full Duplex entre dos módems analógicos utilizando una modulación PSK de 600 baudios para lograr una transferencia de datos de hasta 600 ó 1200 bit/s.
·         V.32. Transmisión a 9.600 bit/s.
·         V.32bis. Transmisión a 14.400 bit/s.
·         V.34. Estándar de módem que permite hasta 28,8 kbit/s de transferencia de datos bidireccionales (full-duplex), utilizando modulación en PSK.
·         V.34bis. Módem construido bajo el estándar V34, pero permite una transferencia de datos bidireccionales de 33,6 kbit/s, utilizando la misma modulación en PSK. (estándar aprobado en febrero de 1998)
·         V.90. Transmisión a 56,6 kbit/s de descarga y hasta 33.600 bit/s de subida.
·         V.92. Mejora sobre V.90 con compresión de datos y llamada en espera. La velocidad de subida se incrementa, pero sigue sin igualar a la de descarga.
Existen, además, módems DSL (Digital Subscriber Line), que utilizan un espectro de frecuencias situado por encima de la banda vocal (300 - 3.400 Hz) en líneas telefónicas o por encima de los 80 kHz ocupados en las líneas RDSI, y permiten alcanzar velocidades mucho mayores que un módem telefónico convencional. También poseen otras cualidades, como es la posibilidad de establecer una comunicación telefónica por voz al mismo tiempo que se envían y reciben datos.


PROTOCOLOS DE TRANSFERENCIA DE ARCHIVOS
El control de errores: son varias técnicas mediante las cuales se chequea la fiabilidad de los bloques de datos o de los caracteres.
·         Paridad: función donde el transmisor añade otro bit a los que codifican un símbolo. Es paridad par, cuando el símbolo tenga un número par de bits y es impar en caso contrario. El receptor recalcula el número de par de bits con valor uno, y si el valor recalculado coincide con el bit de paridad enviado, acepta el paquete. De esta forma se detectan errores de un solo bit en los símbolos transmitidos, pero no errores múltiples.
·         CRC: (CyclicRedundancyCheck, prueba de redundancia cíclica). Esta técnica de detección de error consiste en un algoritmo cíclico en el cual cada bloque o trama de datos es chequeada por el módem que envía y por el que recibe. El módem que está enviando inserta el resultado de su cálculo en cada bloque en forma de código CRC. Por su parte, el módem que está recibiendo compara el resultado con el código CRC recibido y responde con un reconocimiento positivo o negativo dependiendo del resultado.
·         MNP: (MicrocomNetworkingProtocol, protocolo de red Microcom). Es un control de error desarrollado por Microcom, Inc. Este protocolo asegura transmisiones libres de error por medio de una detección de error, (CRC) y retransmisión de tramas equivocadas.